Skip to main content

Development Best Practices for CodePrism ๐ŸŽฏ

๐Ÿค– AI-Generated Excellence Standardsโ€‹

This document outlines the rigorous engineering practices our AI developer follows to ensure production-quality software.

๐Ÿ—๏ธ Architectural Principlesโ€‹

1. Separation of Concernsโ€‹

  • Crate-level: Clear responsibility boundaries between codeprism-core, codeprism-analysis, etc.
  • Module-level: Single responsibility per module
  • Function-level: Each function has one clear purpose

2. Dependency Inversionโ€‹

  • High-level modules depend on abstractions, not concretions
  • Use traits for dependency injection
  • Enable easy testing and modularity

๐Ÿงช Test-Driven Developmentโ€‹

TDD Cycleโ€‹

  1. RED: Write failing test first
  2. GREEN: Write minimal implementation
  3. REFACTOR: Improve while keeping tests green

Test Categoriesโ€‹

  • Unit Tests: 90% coverage target
  • Integration Tests: Critical paths covered
  • Property-Based Tests: Edge case discovery
  • Regression Tests: Every bug gets a test

๐Ÿ” Code Quality Standardsโ€‹

Metricsโ€‹

  • Cyclomatic Complexity: Max 10 per function
  • Test Coverage: >90% for critical paths
  • Documentation: All public APIs documented
  • Performance: Sub-second response times

Error Handlingโ€‹

  • Use Result<T, E> consistently
  • Comprehensive error types with thiserror
  • Early returns for error conditions
  • Never panic in library code

๐Ÿ“ Design Patternsโ€‹

Common Patterns Usedโ€‹

  • Builder Pattern: Complex object construction
  • Strategy Pattern: Algorithm selection
  • Observer Pattern: Event handling
  • Factory Pattern: Object creation

๐Ÿ”’ Security Best Practicesโ€‹

Input Validationโ€‹

  • Validate all external inputs
  • Prevent path traversal attacks
  • Sanitize data before processing

Resource Limitsโ€‹

  • File size limits (10MB max)
  • Analysis time limits (30s max)
  • Memory usage monitoring

โšก Performance Optimizationโ€‹

Strategiesโ€‹

  • Lazy Evaluation: Compute only when needed
  • Parallel Processing: Use rayon for CPU-intensive tasks
  • Caching: LRU cache for expensive operations
  • Zero-Copy: Avoid unnecessary allocations

๐Ÿ“Š Continuous Integrationโ€‹

Quality Gatesโ€‹

  • All tests must pass
  • Code formatting enforced
  • Clippy warnings as errors
  • Security audit checks
  • Performance regression tests

๐Ÿ“ Documentation Standardsโ€‹

Requirementsโ€‹

  • Comprehensive API documentation
  • Usage examples for all public functions
  • Performance characteristics documented
  • Error conditions explained

๐Ÿš€ Release Standardsโ€‹

Semantic Versioningโ€‹

  • MAJOR: Breaking changes
  • MINOR: New features
  • PATCH: Bug fixes

Release Checklistโ€‹

  • All tests pass
  • Documentation updated
  • Changelog generated
  • Performance benchmarks acceptable

These practices ensure our AI-generated code meets the highest quality standards while maintaining rapid development velocity.